On similarity of an arbitrary matrix to a block diagonal matrix

نویسندگان

چکیده

Let an n x -matrix A have m < (m ? 2) different eigenvalues ?j of the algebraic multiplicity (j = 1,..., m). It is proved that there are ?j-matrices Aj, each which has a unique eigenvalue ?j, such similar to block-diagonal matrix ?D diag (A1,A2,..., Am). I.e. invertible T, T-1AT ?D. Besides, sharp bound for number kT := ||T||||T-1|| derived. As applications these results we obtain norm estimates functions non-regular on convex hull spectra. These generalize and refine previously published results. In addition, new spectral variation matrices appropriate situations it refines well known bounds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutiveness of linear combinations of a quadratic‎ ‎or tripotent matrix and an arbitrary matrix

In this article, we characterize the involutiveness of the linear combination of the forma1A1 +a2A2 when a1, a2 are nonzero complex numbers, A1 is a quadratic or tripotent matrix,and A2 is arbitrary, under certain properties imposed on A1 and A2.

متن کامل

involutiveness of linear combinations of a quadratic‎ ‎or tripotent matrix and an arbitrary matrix

in this article, we characterize the involutiveness of the linear combination of the forma1a1 +a2a2 when a1, a2 are nonzero complex numbers, a1 is a quadratic or tripotent matrix,and a2 is arbitrary, under certain properties imposed on a1 and a2.

متن کامل

A Numerical Algorithm for Block-diagonal Decomposition of Matrix ∗-algebras

Motivated by recent interest in group-symmetry in the area of semidefinite programming, we propose a numerical method for finding a finest simultaneous block-diagonalization of a finite number of symmetric matrices, or equivalently the irreducible decomposition of the matrix ∗-algebra generated by symmetric matrices. The method does not require any algebraic structure to be known in advance, wh...

متن کامل

Diagonal Matrix Reduction over Refinement Rings

  Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement.  Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N  if and only if Mm ~Nm for all maximal ideal m of  R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...

متن کامل

Factorization of Block Triangular Matrix Functions with Off-diagonal Binomials

Factorizations of Wiener–Hopf type are considered in the abstract framework of Wiener algebras of matrix-valued functions on connected compact abelian groups, with a non-archimedean linear order on the dual group. A criterion for factorizability is established for 2 × 2 block triangular matrix functions with elementary functions on the main diagonal and a binomial expression in the off-diagonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2104205g